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Introduction * ltis relatively easy to force the model precipitation to be Statistics with TMPA and GFS 3-9 hour forecasts

e Many in-situ and satellite based precipitation observations close .to_ the observed vglues; howe\{er, Sinte th'.s 'S not e \We target to run assimilation experiments at a T62 resolution. TMPA data are upscaled to the Gaussian grid
h b d ilable, but th imilati f an efficient way to modify the potential vorticity field that used by the T62 GFS model using an areal conservative remappin
ave DEeen made aval ab’e, Ul the assimflation o the model woud remember, model forecasts tend to lose Y . J PRING.
precipitation is still difficult because of : their additional skill after few forecast hours e 2001-2010 (10 year) period is chosen to compute all these statistics.
o Nonlinear observation operator e Pronosed method of precipitation assimilatic.)n' e 9-hour GFS model forecasts initialized from every 6-hour NCEP Climate Forecast System Reanalysis (CFSR)
o non-Gaussianity of the precipitation variable 5 L%cal ensemble tra?nsfo?m Kalman filter (LETKF) are conducted within the 10-year period, in which the 3-9 hour forecasts (i.e., assimilation window) are compared
o Imperfect precipitation parameterization in the to the TMPA data. In the LETKF data assimilation, this period of model forecasts is used as background.

al model o Cumulative distribution function (CDF)-based |
numerical mode transformation applied to the precipitation variable Instantaneous prcp rate 6-h accumulated prcp 6-h accum. Gaussmrl trans. O'??p?IYSHEQ s}fﬁ'(m%ﬁscoiggﬁggﬁfb ?I?crs

o unknown errors associated with the precipitation (instead of logarithm transformation) ‘ . ‘ — A
observations. o Ensemble background-based observation selection EZ‘ ZZA N A
criterion (instead of observation-based criterion). K= ‘ 1 T | < 7 comn ’
CDF-based Gaussian transformation
e The “Gaussian anamorphosis” (also used by Schoniger et al. Example of the Gaussian transformation
201 2 in hyd ro Ogy): (a) (b) T62 1GO.FS forecastst(r);\m/h) i e W T62 GFSlt}orecasts (mrr:;) 1e6 ._- i Tézz GFS—florecasDts [trar:sforme?d] L 2‘?«%5
_ ~—1y 06 12 18 24 30 36 42 48 5 o P
Ytrans = G~ T[F(y)] e B
P . CDFs of both TMPA and GFS forecasts
y : Original variable. R e e || e ——y

| ® Empirical CDFs as a function of geographic location and 10-day period of the year
R CARE e (i.,e., 1-10 Jan., 11-20 Jan., ... etc.) are constructed from the 10-year TMPA data

/ and GFS forecasts, in order to define the Gaussian transformation of the
precipitation variables for both observations and model background.
DN ® \When computing the CDF at each grid point and each 10-day period, all data
N '?y:g%-lfp(gﬁ it o) within 500-km radius and +/- 20-day period are considered in order to obtain
(d) - spatially and temporally smooth CDFs. @

F : Empirical cumulative distribution function (CDF) of y
based on a long period of observations or model climatology.
G1: Inverse CDF of normal distribution.

G l(x) = v2erf-1(2x - 1)

e Precipitation variables contain a large portion of zero values.
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o Zero precipitation values have to be considered in the Lo .
transformation. 08 S ERE
o A nature choice: assigning the middle value of zero- = RMSE: Different variables, regions, and forecast times T e s CEeg
precipitation cumulative probability to F(0). z B T at 500 hPa 2o Qat 700 hPa w 2
e | ETKF assimilation of precipitation is performed on the u O ' R |
transformed space. R , I o]
e The transformation can apply to observed values and model S - S (j
background values separately. In this case, it not only transforms 0 1 2 3 4 5 6 3 02 4 0 1 2 3 q LA sof
an arbitrary variable into a Gaussian variable, but also functions (e Yoo ool i

as a “CDF-based bias correction”
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All variables in all regions are improved in real data/model experiments.
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Perfect model experiment with SPEEDY model

Improvement in both analysis and forecast errors Impact of Gaussian transformation Conclusions and Future directions

(a) RMS errors: U (m/s) - Analysis (b) Forecast RMS analysis errors: U (m/s) ®

Assimilating precipitation with LETKF, which does not require linearization of the model, and gives us the “error

correlation of the day”, can improve all “master” variables more efficiently comparing to nudging or variational

approaches, and thus lead to improvement in longer-term model forecasts.

® Using Gaussian transformation for precipitation based on its climatological distribution in the model and
observations, and also quality control criteria specialized for precipitation, we improve not only SPEEDY, but also
GFS model analysis and 5-day forecasts.

® The effect of precipitation assimilation improves all variables in all regions.
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iogy 10 BT ED gy MAR AT MAT U UL AGG SEROCT OVOES poss © ** Forecasttime () 0 ® \We would like to extend the method on tropical cyclone precipitation assimilation in Weather Research &
(Spin-up) (After the spin-up) (11-month average after the spin-up period) - 50%err: Same as PP_CTRL, but increase the observation Forecasting Model. Since tropical cyclones are a strongly dynamic-thermodynamic coupling system, improving
- RAOBS: Assimilate rawinsonde observations error of precipitation observations from 20% to 50%. potential vorticity with precipitation assimilation may have great impact. Taking advantages of TRMM, GPM data
> PP_CTRL.: Assimilate rawinsonde observations + uniformly distributed global precipitation > 50%err noGT: Same as 50%err, but do not use

and this effective method of precipitation assimilation, it may be possible to improve eyewall and rainband
_ _ O _ _ structures and thus produce better intensity forecasts.

The analysis and 5-day forecasts both show improvements in idealized experiments. ® \\e are exploring several other advances and plan to have a system tested and ready for operational
implementation.

> Qonly: Same as PP_CTRL, but only update moisture field by precipitation assimilation the Gaussian transformation



